The Challenges of Surface Reconstruction
 T. Marzais, Y. Gerard and R. Malgouyres

1 Introduction

1.1 B-rep model

There exist two main families of models for 3D objects:

CSG tree, it is tree that leaves are primitive shapes (polytopes, cones, spheres...) and that nodes are operators (symmetric difference, union, intersection...)

B-rep model, it is a description of the boundary of the object.
The boundary is made of several surfaces (B-splines, Béziers...) having borders made of edges and vertices. The B-rep model contains information of topological nature to describe how the edges and vertices of each surface are connected to the others

1.4 Purpose

We do not pretend to be original on the question.We hope however to put in perspective the main steps of surface reconstruction as considered in H. Hoppe PhD Thesis Surface Reconstruction from unorganized points (1992) or in several ulterior works with M. Eck and others authors. Ideas on the reconstruction process can also be found in Advanced Surface Fitting Techniques (2002) by V. Weiss, L. Andor, G. Renner, T. Varady. We find many details on the parametrization step in excellent M.S. Floater and K. Hormann survey on the question Surface Parametrization: a tutorial and survey (2005).

2 The four Main Steps of Surface Reconstruction

2.1 Data

Raw data comes usually from a measurements. A preprocessing step can be needed to delete points with errors or noise that amplitude can perturb the reconstruction.
The density of the points on the surface to be reconstructed is of course determining the quality of the reconstruction. LP-fitting method can however deal (theoritically) with irregular sampling.
In case of accurate data, the input can be made of a set of voxels having properties of digital topology which allow to use specific algorithms such as Marching Cubes.

2.3 Partition

The partition step is the one which generates the topological information on how the surfaces, edges and vertices should be related to each other. This knowledge of the reconstructed surface is directly derivated from the adjacency relations between the regions of the partition. If a region has 4 adjacent regions, the surface reconstructed from this region should have 4 boundaries with the neighboring surfaces
The usual patches of surfaces used in CAD (Beziers, B-splines, NURBS) have 4 borders in the classical case. We can also consider triangular Béziers surfaces (with 3 borders) but it would be unusual to work with surfaces having more borders. Thus it seems to be complicated to join a surface fitting the points of a region with more than 4 adjacent surfaces corresponding to the neighboring regions. It is probably easier to construct regions which have no more than 4 adjacent regions.
One of the possible approach in the framework of mesh partition, is to consider the problem of segmentation as an application of mesh simplification. The question to obtain a simplified mesh satisfying the constraint on the number of adjacency regions remains however open (as far as we know):
Does there exist methods of segmentation with constraints on the adjacency graph of the regions ?

2.5.2 Joining the surfaces

Linear constraints should be added in the fitting instance to guarantee the joining of the reconstructed surfaces.

1.3 A problem of Approximation

The problem is more to find a boundary which is close to the initial points set than a surface which matches exactly with the input

Approximation allows to decrease the degree of freedom necessary to fit exactly the input. It leads however to a problem of reconstruction which is highly unlinear and that number of variables is too high to considerate a global research of a minimal error. Mathematical expression of the problem requires to introduce a norm on the error vector which can be as well euclidian or uniform if we try to obtain a surface with a maximal accuracy on each point.

