LP fitting approach for reconstructing parametric surfaces from points clouds

Thibault Marzais, Yan Gerard, Rémy Malgouyres

LLAIC IUT département Informatique BP 86 63173 AUBIÈRE CEDEX FRANCE marzais@llaic3.u-clermont1.fr

25 February 2006

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

イロン イヨン イヨン イヨン

Introduction

Geometric modeling

Many ways to represent an object in a computer

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction

Geometric modeling

Many ways to represent an object in a computer

An object can be modelized as

- a point cloud
- a voxels set
- a mesh
- parametric surfaces (Bézier, B-Spline)

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

↓ complex level

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction

Geometric modeling

Many ways to represent an object in a computer

An object can be modelized as

- a point cloud
- a voxels set
- a mesh
- parametric surfaces (Bézier, B-Spline)

A problem of geometric modeling

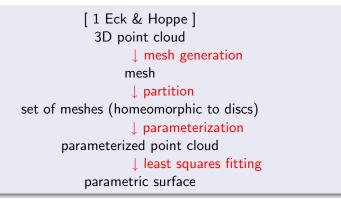
A problem of reverse engeneering is passing from point cloud (issued from a scanner) to parametric surface (CAD)

Thibault Marzais, Yan Gerard, Rémy Malgouyres

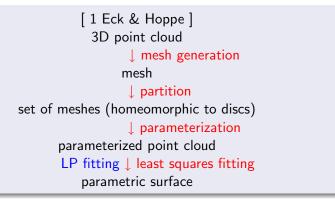
LP fitting approach for reconstructing parametric surfaces from

↓ complex level

Introduction



Introduction



Outline

- Definitions
 - Definitions : Parametric surfaces
 - Definitions : Bézier surfaces
 - Definitions : B-Spline surfaces
 - Definitions : Linear program

2 Surface fitting

- Generality
- Approximate reconstruction
- Approximate reconstruction : Least square fitting
- Approximate reconstruction : LP fitting

3 Results

- Protocole
- Results

▲帰▶ ★ 注▶ ★ 注▶

Definitions : Parametric surfaces Definitions : Bézier surfaces Definitions : B-Spline surfaces Definitions : Linear program

Definition of some parametric surfaces

A definition of some parametric surfaces

$$Q(s,t) = \sum_{i=1}^{n} P_i f_i(s,t)$$

with

- Basis of fonctions $f_i : \mathbb{R}^2 \mapsto \mathbb{R}$
- Control points $P_i \in \mathbb{R}^3$

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions : Parametric surfaces Definitions : Bézier surfaces Definitions : B-Spline surfaces Definitions : Linear program

Bézier surfaces

A Bézier surface is a parametric surface. The used basis function is the tensor product of Bernstein polynomials :

$$B_{i,n}(t) = \binom{n}{i} * t^i * (1-t)^{n-i}$$

Expression of a Bézier surface of degre n,m

$$Q(s,t) = \sum_{i=1}^{n} \sum_{j=1}^{m} P_{i,j} B_{i,n}(s) B_{j,m}(t)$$

Thibault Marzais, Yan Gerard, Rémy Malgouyres

4 □ > < ⑦ > < ≧ > < ≧ > < ≧ < ?</p>
LP fitting approach for reconstructing parametric surfaces from

Definitions : Parametric surfaces Definitions : Bézier surfaces Definitions : B-Spline surfaces Definitions : Linear program

B-Splines surfaces - 1/2

Data

- Let k & l be two integers (degree of the surface).
- Let *m* & *n* be two integers (order of the surface).
- Let $S = \{s_0, \ldots, s_{m+k-1}\}$, $T = \{t_0, \ldots, t_{n+l-1}\}$ two knot vectors, with $s_0 \le s_1 \le \ldots \le s_{m+k-1}$, $t_0 \le t_1 \le \ldots \le t_{n+l-1}$.
- A B-Spline surface is a parametric surface. The used basis function is the tensor product of Cox de Boor functions defined by:

$$N_{i,r}(t) = \frac{t-t_i}{t_{i+r-1}-t_i}N_{i,r-1}(t) + \frac{t_{i+r}-t}{t_{i+r}-t_{i+1}}N_{i+1,r-1}(t)$$

LP fitting approach for reconstructing parametric surfaces from

Definitions : Parametric surfaces Definitions : Bézier surfaces **Definitions : B-Spline surfaces** Definitions : Linear program

B-Splines surfaces - 2/2

Expression of a B-Spline surface of order n,m, degree k,l

$$Q: [s_{k-1}, s_m] \times [t_{l-1}, t_n] \longrightarrow \mathbb{R}^3$$

$$(s, t) \longmapsto Q(s, t)$$

$$= \sum_{i=0}^m \sum_{j=0}^n P_{i,j} N_{i,k}(s) N_{j,l}(t)$$

Remark

Fonctions $N_{i,r}(t)$ are piecewise polynomials with compact support. B-Spline surfaces offer local control of the surface.

< □ > < @ > < 注 > < 注 > ... 注

Definitions : Parametric surfaces Definitions : Bézier surfaces Definitions : B-Spline surfaces Definitions : Linear program

Linear program

Definition

• a linear program is an optimization problem :

Minimize (linear cost fonction) linear constraints

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

イロン イヨン イヨン イヨン

Definitions : Parametric surfaces Definitions : Bézier surfaces Definitions : B-Spline surfaces Definitions : Linear program

Linear program

Definition

• a linear program is an optimization problem :

Minimize (linear cost fonction) linear constraints

Example

$$\begin{array}{l} \underset{x,y}{Min} (5x + 7y) \\ 3x - 9y \leq 2 \\ 8x + 12y \leq 7 \\ -5x + 8y \leq 3 \end{array}$$

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

イロン イヨン イヨン イヨン

Generality

Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

・ロト ・回ト ・ヨト ・ヨト

Our problem of reconstruction

parameterized point cloud LP fitting ↓ least squares fitting parametric surface

Generality

Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Our problem of reconstruction

parameterized point cloud LP fitting ↓ least squares fitting parametric surface

Input

- points M_k , $1 \le k \le N$
- parameters values s_k, t_k associated to M_k
- basis of functions $f_i \ 1 \le i \le n$

Generality

Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Our problem of reconstruction

parameterized point cloud LP fitting ↓ least squares fitting parametric surface

Input

- points M_k , $1 \le k \le N$
- parameters values s_k , t_k associated to M_k
- basis of functions $f_i \ 1 \le i \le n$

Output

• control points P_i of a parametric surface $Q(s,t) = \sum_{i=1}^{n} P_i f_i(s,t)$

Thibault Marzais, Yan Gerard, Rémy Malgouyres

< □ > < □ > < ≡ > < ≡ > < ≡ > < ≡ < ⊃ < ○</p>
LP fitting approach for reconstructing parametric surfaces from

Generality

Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Input

- points M_k , $1 \le k \le N$
- parameters values s_k, t_k associated to M_k
- basis of functions $f_i \ 1 \le i \le n$

Output

• control points P_i of a parametric surface $Q(s,t) = \sum_{i=1}^{n} P_i f_i(s,t)$

Thibault Marzais, Yan Gerard, Rémy Malgouyres

LP fitting approach for reconstructing parametric surfaces from

Generality

Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Input

- points M_k , $1 \le k \le N$
- parameters values s_k, t_k associated to M_k
- basis of functions $f_i \ 1 \le i \le n$

Output

• control points P_i of a parametric surface $Q(s,t) = \sum_{i=1}^{n} P_i f_i(s,t)$

Generality

Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Input

- points M_k , $1 \le k \le N$
- parameters values s_k, t_k associated to M_k
- basis of functions $f_i \ 1 \le i \le n$

Output

• control points P_i of a parametric surface $Q(s,t) = \sum_{i=1}^n P_i f_i(s,t)$

What is an ideal solution ?

$$\forall k, \ Q(s_k, t_k) = M_k$$

Thibault Marzais, Yan Gerard, Rémy Malgouyres

LP fitting approach for reconstructing parametric surfaces from

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Generality

Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

The exact reconstruction system

$$Q(s_k, t_k) = M_k \quad \forall k$$

$$\iff$$

$$\sum_{i=1}^{n} P_i f_i(s_k, t_k) = M_k \quad \forall k$$

$$\iff$$

$$\sum_{i=1}^{n} P_i^{\times} f_i(s_k, t_k) = x_k \quad \forall k$$

$$\sum_{i=1}^{n} P_i^{\vee} f_i(s_k, t_k) = y_k \quad \forall k$$

$$\implies$$

 $A * P^{x} = X$ $A * P^{y} = Y$ $A * P^{z} = Z$

Solving the three systems gives an exact reconstruction

Thibault Marzais, Yan Gerard, Rémy Malgouyres

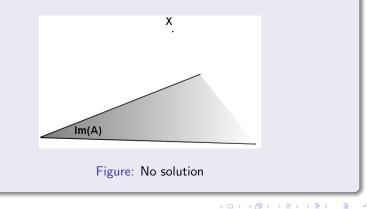
LP fitting approach for reconstructing parametric surfaces from

Generality

Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

x-coordinate system

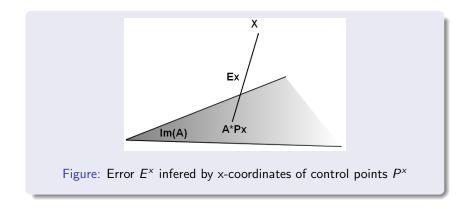
Let us consider the first system : $A * P^x = X$ In general, there is no exact solution.



Generality Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

(ロ) (同) (E) (E) (E)

Error E^x inferred by P^x



Generality Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Least square fitting [2]

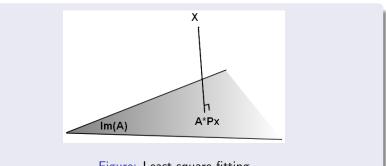


Figure: Least square fitting

Minimize euclidian norm E^{x} Orthogonal projection of X onto Im(A)

Thibault Marzais, Yan Gerard, Rémy Malgouyres

LP fitting approach for reconstructing parametric surfaces from

Generality Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Features of least square fitting

• A distant point can be considered as noise

Generality Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Features of least square fitting

- A distant point can be considered as noise
- Example : bone excrescence

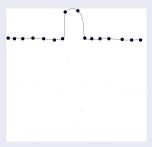


Figure: Bone Excrescence

Generality Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Features of least square fitting

- A distant point can be considered as noise
- Example : bone excrescence

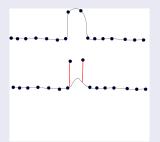


Figure: Bone Excrescence, Least squares fitting

• Least squares fitting minimizes mean error.

Generality Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Features of least square fitting

- A distant point can be considered as noise
- Example : bone excrescence

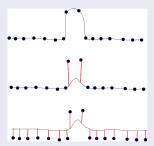


Figure: Bone Excrescence, a better solution according to uniform error

• If we consider uniform norm, there exists better solutions

Generality Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Our approach : uniform approach

uniform approach

Instead of minimizing euclidian norm of $E^x = A * P^x - X$, we minimize its uniform norm :

$$\underset{P^{x}}{Min}\left(||E^{x}||_{\infty}\right)$$

Generality Approximate reconstruction Approximate reconstruction : Least square fitting Approximate reconstruction : LP fitting

Toward linear program

$$\begin{cases} \underset{P^{x}}{\text{Min}}(||E^{x}||_{\infty}) \\ \iff & \begin{cases} \underset{P^{x}}{\text{Min}}\left(M_{ax}|E_{i}^{x}|\right) \\ \\ \iff & \begin{cases} \underset{P^{x},h}{\text{Min}}(h) \\ -h \leq E_{i}^{x} \leq +h \ \forall i \end{cases} \\ \\ \iff & \begin{cases} \underset{P^{x},h}{\text{Min}}(h) \\ -h * 1 \leq A * P^{x} - X \leq h * 1 \end{cases} \end{cases}$$

Thus, the problem is formulated by a linear program.

Thibault Marzais, Yan Gerard, Rémy Malgouyres

LP fitting approach for reconstructing parametric surfaces from

Protocole Results

Tests

Surface generation

- Bézier surfaces
- B-Spline surfaces
- sphere

・ロト ・回ト ・ヨト ・ヨト … ヨ

Protocole Results

Tests

Surface generation

- Bézier surfaces
- B-Spline surfaces
- sphere

Perturbation

Gaussian noise on

- points M_k
- parameters s_k , t_k

Protocole Results

Compare the results

Points M_k

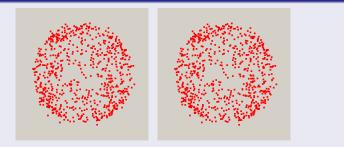


Figure: Results of reconstruction, left LP, right LSF

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

・ロト ・回ト ・ヨト ・ヨト

Protocole Results

Compare the results

Points M_k , Surface Q

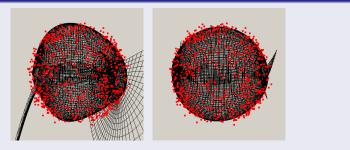


Figure: Results of reconstruction, left LP, right LSF

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

・ロト ・回ト ・ヨト ・ヨト

Protocole Results

Compare the results

Points M_k , Surface Q and deviation vectors

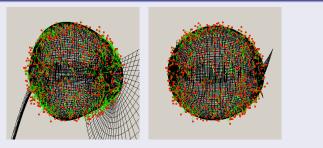


Figure: Results of reconstruction, left LP, right LSF

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

・ロト ・回ト ・ヨト ・ヨト

Protocole Results

Compare the results

Data processing

- We pick deviation vectors $M_k Q(s_k, t_k)$
- We compute their euclidian norm
- We put them in an histogram

・ロン ・雪と ・ヨン・モン

Protocole Results

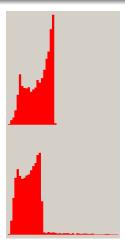


Figure: Favourable case of reconstruction (top LP, bottom LSF)

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

イロン イボン イヨン イヨン 二日

Protocole Results

Figure: Unfavourable case of reconstruction (top LP, bottom LSF)

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

イロト イポト イヨト イヨト 二日

Protocole Results

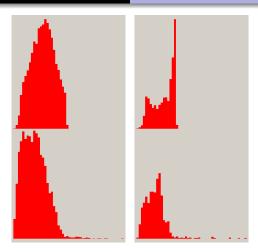


Figure: Usual case of reconstruction (top LP, bottom LSF)

Thibault Marzais, Yan Gerard, Rémy Malgouyres LP fitting approach for reconstructing parametric surfaces from

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

Protocole Results

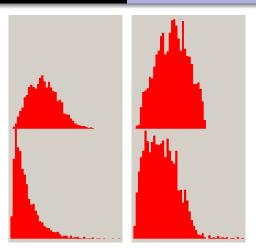


Figure: Usual case of reconstruction with disturbed data (top LP, bottom LSF)

Conclusion

- LP fitting is an alternative to Least square fitting
- Useful for surface reconstruction with a fixed tolerance on the error [3, Weiss & al]

< □ > < @ > < 注 > < 注 > ... 注

references

[1] Eck, M. and Hoppe, H. (1996). Automatic reconstruction of B-Spline surfaces of arbitrary topological type.

[2] Farin, G. (2002). Curves and surfaces for CAGD: a practical guide.

[3] Weiss, V., Andor, L., Renner, G., and Varady, T. (2002). Advanced surface fitting techniques.

Any questions ?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの